Premium
Effect of grafted maleic anhydride content and recyclability of dynamically cured maleated natural rubber/polypropylene blends
Author(s) -
Nakason Charoen,
Saiwari Sitisaiyidah
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29070
Subject(s) - maleic anhydride , vulcanization , materials science , succinic anhydride , natural rubber , thermoplastic elastomer , polypropylene , ultimate tensile strength , compatibilization , copolymer , thermoplastic , melt flow index , composite material , mooney viscosity , izod impact strength test , polymer chemistry , polymer blend , polymer
Abstract Maleated natural rubbers (MNRs) were prepared using various levels of maleic anhydride (MA) at 4, 6, 8, 10, and 12 phr. Dynamically cured 60/40 MNR/PP blends with phenolic‐modified polypropylene (Ph‐PP) compatibilizer at a loading level of 5 wt % of PP were prepared by melt mixing process using sulfur vulcanization system. The influence of the level of MA on properties of the thermoplastic vulcanizates (TPVs) was studied. It was found that the mixing torque, apparent shear stress, shear viscosity, tensile strength, and hardness properties increased with increasing levels of the MA or grafted succinic anhydride groups in the MNR molecules. This is attributed to an increase in chemical interaction and reaction between methylol groups in the Ph‐PP molecules and polar functional groups in the MNR molecules upon increasing levels of the grafted succinic anhydride groups. As a consequence, compatibilizing block copolymers of MNR and PP blocks were formed. The block copolymers were capable of compatibilizing with MNR and PP blend components via the respective blocks. Recyclability of the MNR/PP TPVs was also studied. It was found that, after processing through a number of cycles by injection molding and extrusion processing, the TPV exhibited marginal decreases in mechanical properties. This corresponded to slightly increasing size of the dispersed vulcanized rubber domains. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008