Premium
Effect of filler geometry on viscoelastic damping of graphite/aramid and carbon short fiber‐filled SBR composites: A new insight
Author(s) -
Praveen S.,
Chakraborty B. C.,
Jayendran S.,
Raut R. D.,
Chattopadhyay S.
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29064
Subject(s) - composite material , materials science , aramid , viscoelasticity , carbon black , composite number , graphite , styrene butadiene , ultimate tensile strength , fiber , natural rubber , dissipation , polymer , styrene , physics , copolymer , thermodynamics
Abstract An investigation on the effect of filler geometry/shape on the dynamic mechanical properties of polymers was conducted. The viscoelastic damping matrix chosen was SBR and the fillers chosen were graphite, aramid, and carbon short fibers. The study was conducted by taking a control base compound of 20 parts N330 carbon black‐filled styrene butadiene rubber (SBR). Dynamic mechanical thermal analyzer was used to investigate the viscoelastic damping of the rubber composites at low dynamic strain levels. Compressive hysterisis at moderate degree of strain were evaluated for all the composite samples to probe into their high strain static damping properties. SEM was used to investigate the matrix‐fiber interaction and distribution of the fillers. Investigations demonstrated that the matrix‐filler interface plays a major role in energy dissipation. The amount of interface was analyzed by considering the half height width of tan δ peak. Fiber matrix interaction parameter was calculated from the tan δ max values for matrix and composite. It was observed the interaction parameter and the low strain tensile stress values register similar trend. Aramid short fibers were most effective in more energy dissipation than other fillers under consideration. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009