z-logo
Premium
N ‐acetyl‐ D ‐galactosamine‐specific lectin isolation from soyflour with poly(HPMA‐GMA) beads
Author(s) -
Perçin Işık,
Yavuz Handan,
Aksöz Erol,
Denizli Adil
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29054
Subject(s) - lectin , soybean agglutinin , glycidyl methacrylate , adsorption , chemistry , chromatography , galactosamine , nuclear chemistry , galactose , biochemistry , organic chemistry , polymer , agglutinin , copolymer
Soybean lectin was purified from seeds of Glycine max L.Merrill SA88. Poly(hydroxypropyl methacrylate‐glycidyl methacrylate) [poly(HPMA‐GMA)] beads were used as an affinity matrix and N ‐acetyl‐ D ‐galactosamine (GalNAc) was used as an affinity ligand. Soybean lectin adsorption with GalNAc attached poly(HPMA‐GMA) beads from soybean lectin solution (in phosphate buffered saline) was 5.0 mg/g. Maximum adsorption capacity for soybean lectin from the soy flour extract was 26.0 mg/g. Elution of soybean lectin from adsorbent was accomplished by 0.5 M galactose solution. Purity of soybean lectin was determined by SDS‐PAGE. It was observed that soybean lectin could be repeatedly adsorbed and desorbed with GalNAc‐attached poly(HPMA‐GMA) beads. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom