Premium
Electrochemical preparation of pyronin Y thin films on gold substrates
Author(s) -
Alanyalıoğlu Murat,
Arık Mustafa
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.29038
Subject(s) - chronoamperometry , cyclic voltammetry , materials science , fourier transform infrared spectroscopy , adsorption , electrochemistry , absorption spectroscopy , analytical chemistry (journal) , chemistry , chemical engineering , electrode , organic chemistry , physics , quantum mechanics , engineering
Cyclic voltammetry, chronoamperometry, UV‐vis absorption spectroscopy, fluorescence spectroscopy, FTIR spectroscopy, and AFM techniques have been employed to investigate pyronin Y thin films formed on Au(111) substrates by electrochemical oxidation of pyronin Y monomer. The medium used in the electropolymerization was an anhydrous acetonitrile solution containing 0.1 M TBAClO 4 as supporting electrolyte. Anodic electropolymerization potential (1450 mV) of pyronin Y has been obtained from cyclic voltammetry data. Solid‐state electropolymerization of pyronin Y was performed by the potential‐controlled electrolysis technique. Chronoamperometry studies indicate that the adsorption of pyronin Y takes place in an instantaneous three‐dimensional nucleation and growth mechanism which is accompanied by random adsorption. UV‐vis absorption and fluorescence spectra of the electrolysis solution as a function of electrodeposition time show the adsorption of insoluble pyronin Y films on Au electrode surface. FTIR‐specular reflectance of a polymer coated Au electrode reveals that there is a possible CC coupling in the formation of polymeric pyronin Y structure. A well ordered polymeric chain structure of pyronin Y on Au(111) has been observed from AFM data. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom