z-logo
Premium
Biodegradation of low‐density polyethylene‐banana starch films
Author(s) -
Torres Apolonio Vargas,
ZamudioFlores Paul Baruk,
SalgadoDelgado René,
BelloPérez Luís Arturo
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.28938
Subject(s) - starch , crystallinity , biodegradation , materials science , degradation (telecommunications) , polyethylene , chemical engineering , extrusion , polymer , polymer chemistry , composite material , organic chemistry , chemistry , telecommunications , computer science , engineering
Films were prepared by extrusion using acetylated and oxidized banana starches at different concentrations mixed with low‐density polyethylene, and their biodegradation (buried in soil) at different storage times was studied. Morphological, thermal, and mechanical characteristics of the films after degradation were tested. Films made of acetylated banana starch degraded most rapidly and those prepared with oxidized starch had the slowest degradation time. The type of chemically modified starch plays an important role in degradation of film. Burying the films produced a decrease in degradation temperature at the longest storage time, and there was a longer interval in the films prepared with native banana starch, followed by those made of acetylated starch. The buried in soil films had a broad phase transition and, consequently, an increase in enthalpy. This is due to degradation of amorphous starch zones with an increase in the crystallinity. Electron scanning microscopy analysis revealed greater degradation at longer storage time and a more marked effect in the films made of modified banana starch. Mechanical properties of the films were affected by degradation, and these varied depending on the modified banana starch used. The use of biodegradable polymers such as chemically modified banana starch might be feasible for making films with a high rate of degradation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here