z-logo
Premium
Photoinitiating polymerization to prepare biocompatible chitosan hydrogels
Author(s) -
Hu Xiaohong,
Gao Changyou
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.28704
Subject(s) - self healing hydrogels , chitosan , ammonium persulfate , biocompatibility , swelling , polymerization , polymer chemistry , potassium persulfate , methacrylic acid , chemistry , nuclear chemistry , chemical engineering , materials science , swelling capacity , polymer , organic chemistry , composite material , engineering
Abstract Chitosan hydrogels were prepared from water soluble chitosan derivatives (chitosan‐MA‐LA, CML) by photoinitiating polymerization under the existence of Irgacure2959 and the irradiation of UV light. The CML was obtained by amidation of the amine groups of chitosan with lactic acid and methacrylic acid. Gelation time of the hydrogel could be adjusted within a range of 5–50 min, and controlled by factors such as the degree of MA substitution, initiator concentration, existence of oxygen, and salt. The dry hydrogel adsorbed tens to hundred times of water, forming a highly hydrated gel. The swelling ratio was smaller at the higher degree of MA substitution, higher pH, and higher salt concentration. Rheological test showed that the hydrogel is elastomeric in the measuring frequency range, with a storage modulus and loss modulus of 0.8–7 kPa and 10–100 Pa, respectively. In vitro culture of chondrocytes demonstrated that the cells could normally proliferate in the extractant of the hydrogels, showing no cytotoxicity at lower initiator concentration. By contrast, the extractant of the hydrogel made by the redox initiating system, i.e., ammonium persulfate (APS) and N , N , N ′, N ′‐tetramethylethylenediamine (TEMED), showed apparent cytotoxicity. Thus, the chitosan hydrogels initiated by the Irgacure2959 have better comprehensive properties, in particular better biocompatibility, and are more suitable for biomedical applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here