z-logo
Premium
Polymeric curing agent reinforced silicone rubber composites with low viscosity and low volume shrinkage
Author(s) -
Dai Lina,
Zhang Zhijie,
Zhao Yunfeng,
Xie Zemin
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.28595
Subject(s) - materials science , composite material , shrinkage , curing (chemistry) , thermogravimetric analysis , silicone rubber , polydimethylsiloxane , thermal stability , thermomechanical analysis , silicone , natural rubber , thermal expansion , chemical engineering , engineering
A new type of polymeric curing agent (PCA) was synthesized to improve processing property, increase mechanical properties, and decrease volume shrinkage of silicone rubber. The PCA was prepared by co‐hydrolysis condensation of dimethyldiethoxysilane (DDS) and polyethoxysiloxane, then modified by hexamethylcyclotrisilazane (D 3 N ). Commercial silica and tetraethoxysilane (TEOS) were used as controls simultaneously. The properties of polydimethylsiloxane (PDMS) composites were characterized by shear viscosity measurements, room temperature mass loss, linear volume shrinkage, stress‐strain tests, swelling behaviors and thermogravimetric analysis (TGA). PDMS composites using PCA show lower shear viscosity than those using commercial silica. Compared with the traditional PDMS/TEOS curing systems, PDMS/PCA curing systems behave relatively lower volume shrinkage, better reinforcement and thermal properties. In short, PCA acts as a good compromise in providing the best balance of processing property, volume shrinkage, mechanical properties and thermal stability in silicone rubber composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here