z-logo
Premium
Improvement of the Nafion–polytetrafluoroethylene membranes for potential direct methanol fuel cell use by reduction of the methanol crossover
Author(s) -
Tang Haolin,
Pan Mu,
Zhaohui Wan
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.28438
Subject(s) - nafion , membrane , direct methanol fuel cell , methanol fuel , polytetrafluoroethylene , permeation , methanol , materials science , chemical engineering , polymer chemistry , nanoparticle , chemistry , composite material , nanotechnology , electrode , organic chemistry , electrochemistry , biochemistry , anode , engineering
The possibility of ultrathin Nafion/expanded polytetrafluoroethylene (ePTFE) membranes used as proton‐exchange membranes (PEMs) for direct methanol fuel cells (DMFCs) was investigated in this study. Nafion/ePTFE membranes with a thickness of ∼ 14 μm were promoted by self‐assembling Pd nanoparticles on the surface to reduce the methanol crossover. The loading of the Pd nanoparticles assembled on the membranes was 1.6–1.8 μg/cm 2 and had little effect on the high conductivity of the Nafion membranes. With the self‐assembly of Pd nanoparticles, the methanol permeation noticeably decreased from 340 to 28 mA/cm 2 . As a result, the open‐ circuit voltage of the Nafion/ePTFE membranes that were self‐assembled for 48 h had a more significant increase from 0.55 to 0.73 V. The reduction of methanol crossover significantly increased the DMFC voltage‐current performance, and this means that self‐assembled Nafion/polytetrafluoroethylene PEMs have promise in DMFCs. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here