z-logo
Premium
Improvement of the Nafion–polytetrafluoroethylene membranes for potential direct methanol fuel cell use by reduction of the methanol crossover
Author(s) -
Tang Haolin,
Pan Mu,
Zhaohui Wan
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.28438
Subject(s) - nafion , membrane , direct methanol fuel cell , methanol fuel , polytetrafluoroethylene , permeation , methanol , materials science , chemical engineering , polymer chemistry , nanoparticle , chemistry , composite material , nanotechnology , electrode , organic chemistry , electrochemistry , biochemistry , anode , engineering
The possibility of ultrathin Nafion/expanded polytetrafluoroethylene (ePTFE) membranes used as proton‐exchange membranes (PEMs) for direct methanol fuel cells (DMFCs) was investigated in this study. Nafion/ePTFE membranes with a thickness of ∼ 14 μm were promoted by self‐assembling Pd nanoparticles on the surface to reduce the methanol crossover. The loading of the Pd nanoparticles assembled on the membranes was 1.6–1.8 μg/cm 2 and had little effect on the high conductivity of the Nafion membranes. With the self‐assembly of Pd nanoparticles, the methanol permeation noticeably decreased from 340 to 28 mA/cm 2 . As a result, the open‐ circuit voltage of the Nafion/ePTFE membranes that were self‐assembled for 48 h had a more significant increase from 0.55 to 0.73 V. The reduction of methanol crossover significantly increased the DMFC voltage‐current performance, and this means that self‐assembled Nafion/polytetrafluoroethylene PEMs have promise in DMFCs. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom