Premium
Plasma treatment for enhancing mechanical and thermal properties of biodegradable PVA/starch blends
Author(s) -
Yang SungYeng,
Huang ChiYuan
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.28338
Subject(s) - starch , biodegradation , materials science , melt flow index , ultimate tensile strength , glycerol , polyvinyl alcohol , thermogravimetric analysis , thermal stability , modified starch , polymer blend , composite material , scanning electron microscope , chemical engineering , thermogravimetry , fourier transform infrared spectroscopy , polymer chemistry , polymer , chemistry , copolymer , organic chemistry , engineering
Two series of biodegradaable polyvinyl alcohol (PVA)/starch blends, i.e., PVA with/without plasma treatment (PP/P series), were produced by single‐screw extruder. The influences of plasma pretreatment and PVA content on the tensile properties, thermal behaviors, melt flow index, and biodegradability of blends were investigated. PVA pretreated by plasma (PPVA) reacted with glycerol was found not only to mechanically strengthen the PPVA/starch blend but also to improve the compatibility of PPVA and starch. Compared with PVA/starch blends, the melt flow indices of PPVA/starch blends were improved significantly by 200–300% and their tensile strength also increased two‐to‐three‐fold. Thermogravimetry analysis (TGA) showed that the thermal stability of PPVA/starch (85/300g) blend was better than PVA/starch blend at processing temperature and outperformed than PVA and starch at high temperature. Both the PPVA/starch and PVA/starch blends finished biodegradation within 9–10 weeks in soil burial tests. The esterification reaction of PPVA and glycerol was characterized by FTIR spectroscopic measurement and TGA test. The morphologic evolutions of the blend during biodegradation were investigated carefully by scanning electron microscope (SEM) imaging. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008