z-logo
Premium
Synthesis and characterization of novel swelling tunable oligomeric poly(styrene‐ co ‐acrylamide) modified clays
Author(s) -
Chen Ruyi,
Peng Fubing,
Su Shengpei
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.27860
Subject(s) - thermogravimetric analysis , swelling , styrene , acrylamide , polymer chemistry , materials science , thermal stability , polymerization , nuclear chemistry , radical polymerization , chemical engineering , chemistry , copolymer , organic chemistry , polymer , composite material , engineering
The oligomeric poly(styrene‐acrylamide‐vinylbenzylchloride) (P(St‐AM‐VBC)) quaternary ammonium salts have been prepared from the reactions of trimethylamine with the corresponding P(St‐AM‐VBC)s, which were synthesized by free‐radical polymerization of a mixture of styrene, acrylamide, and vinylbenzylchloride. Then the swelling tunable oligomeric poly(styrene‐ co ‐acrylamide) modified clays have been prepared through cation exchange of the sodium ions in the clay with the corresponding P(St‐AM‐VBC) quaternary ammonium salts. The P(St‐AM‐VBC) and its modified clays have been characterized by infrared spectra (IR), gel permeation chromatography (GPC), thermogravimetric analysis (TGA), proton nuclear magnetic resonance ( 1 H NMR), X‐ray diffraction (XRD), and transmission electron microscopy (TEM). The solvent‐swelling capacity of poly(styrene‐ co ‐acrylamide) modified clays have also been tested, and the experimental results have indicated that these clays are novel swelling tunable organic clays. XRD and TEM studies have shown that these novel swelling tunable clays are well‐intercalated or exfoliated. Furthermore, TGA analysis shows that these polymerically modified clays have high thermal stability for nanocomposites by melt blending. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here