z-logo
Premium
Linear viscoelastic properties and crystallization behavior of multi‐walled carbon nanotube/polypropylene composites
Author(s) -
Wu Defeng,
Sun Yurong,
Wu Liang,
Zhang Ming
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.27793
Subject(s) - materials science , composite material , carbon nanotube , crystallization , nanotube , viscoelasticity , polypropylene , percolation threshold , differential scanning calorimetry , rheometer , percolation (cognitive psychology) , rheology , chemical engineering , electrical resistivity and conductivity , physics , electrical engineering , engineering , thermodynamics , neuroscience , biology
Multi‐walled carbon nanotube/polypropylene composites (PPCNs) were prepared by melt compounding. The linear viscoelastic properties, nonisothermal crystallization behavior, and kinetics of PPCNs were, respectively, investigated by the parallel plate rheometer, differential scanning calorimeter (DSC), X‐ray diffractometer (XRD), and polarized optical microscope (POM). PPCNs show the typical nonterminal viscoelastic response because of the percolation of nanotubes. The rheological percolation threshold of about 2 wt % is determined using Cole‐Cole method. Small addition of nanotube can highly promote crystallization of PP matrix because of the heterogeneous nucleating effect. With increasing nanotube loadings, however, the crystallization rate decreases gradually because the mobility of PP chain is restrained by the presence of nanotube, especially at high loading levels. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here