z-logo
Premium
Multiscale mechanical phenomena in electrospun carbon nanotube composites
Author(s) -
Agic Ante
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.27791
Subject(s) - materials science , composite material , microscale chemistry , carbon nanotube , homogenization (climate) , nanocomposite , nanofiber , elastomer , modulus , finite element method , structural engineering , mathematics , biodiversity , ecology , mathematics education , biology , engineering
The carbon nanotube (CNT) structure is a promising building block for future nanocomposite structures. Mechanical properties of the electrospun butadiene elastomer reinforced with CNT are analyzed by multiscale method. Nanofiber diameter dependence on electric field and solution concentration is estimated from experimental data. The fiber microscale effective properties are determined by homogenization procedure using modified shear‐lag model, while the point‐bonded stochastic fibrous network on the mesoscale replaced by continuum effective sheet. Random fibrous network was generated according experimentally determined stochastic quantifiers. The influence of CNT reinforcement on elastic modulus of electrospun sheet on macroscopic level is determined by finite element method. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here