z-logo
Premium
Viscosity behavior of microwave‐heated and conventionally heated poly(ether sulfone)/dimethylformamide/lithium bromide polymer solutions
Author(s) -
Idris Ani,
Ahmed Iqbal
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.27590
Subject(s) - polymer chemistry , materials science , dimethylformamide , viscosity , ether , polymer , tetrafluoroethylene , lithium bromide , anhydrous , chemical engineering , chemistry , copolymer , organic chemistry , composite material , thermodynamics , solvent , engineering , physics , heat exchanger
This article investigates the viscosity behavior of new membrane dope solutions of poly(ether sulfone) (PES) and dimethylformamide with low‐molecular‐weight halogenated lithium bromide (LiBr) additives prepared with two different techniques: (1) a microwave (MW) technique and (2) a conventional heating (CH) technique. In addition, the influence of different concentrations of anhydrous halogenated LiBr additives (0–5 wt %) on the viscosity behavior is analyzed. The viscosity of the dope solutions was assessed with a conical rheometer equipped with a high‐viscosity adapter. The results revealed that the pure PES solutions prepared by the MW and CH techniques exhibited pseudoplastic and Newtonian behavior, respectively. Both the MW and CH PES solutions containing the LiBr additives exhibited dilatant behavior, which obeyed the power law. The apparent viscosity of all the dope solutions prepared with the MW technique was lower than that of those prepared with the CH technique. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here