Premium
Fibroin membrane preparation and stabilization by polyethylene glycol diglycidyl ether
Author(s) -
Moonsri Piyarut,
Watanesk Ruangsri,
Watanesk Surasak,
Niamsup Hataichanoke,
Deming Richard L.
Publication year - 2008
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.27528
Subject(s) - fibroin , membrane , materials science , ultimate tensile strength , fourier transform infrared spectroscopy , polyethylene glycol , polymer chemistry , aqueous solution , chemical engineering , tensile testing , scanning electron microscope , silk , composite material , nuclear chemistry , chemistry , organic chemistry , engineering , biochemistry
Membranes prepared by drying aqueous Bombyx mori silk fibroin (SF) solution and modified silk fibroin (MSF) solutions, prepared by adding the low molecular weight crosslinking agent, polyethylene glycol diglycidyl ether (PEGDE) MW 526, 0–10% w/w, were investigated by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, and UV–vis spectroscopy. Weight gain in aqueous solutions and their mechanical properties (tensile strength, elongation, and Young's modulus) were then characterized. SEM measurements revealed greater porosity in MSF membranes. IR spectra showed transformation from the largely α‐helical/random coil structures in SF membranes to predominantly β‐sheet in MSF membranes. Results from UV–vis spectroscopy showed that the MSF membranes were largely insoluble within the pH range of 4–10. Water absorbability of the MSF membranes improved with increasing the amounts of cross‐linker, up to 4%. The MSF membranes showed greater pliability and tenacity, but lower tensile strength, with increasing PEGDE concentrations. In the wet condition, PEGDE levels up to 4% can improve both tensile strength and tenacity of the MSF membrane, but higher levels (up to 10%) did not significantly change these properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008