Premium
Study on the curing reaction, dielectric and thermal performances of epoxy impregnating resin with reactive silicon compounds as new diluents
Author(s) -
Zheng Yun,
Chonung Kim,
Jin Xiaolin,
Wei Ping,
Jiang Pingkai
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.27502
Subject(s) - epoxy , curing (chemistry) , materials science , dielectric , diluent , differential scanning calorimetry , fourier transform infrared spectroscopy , composite material , dissipation factor , polymer chemistry , thermal stability , chemical engineering , nuclear chemistry , organic chemistry , chemistry , physics , optoelectronics , engineering , thermodynamics
Two silicon compounds including (3‐glycidoxypropyl)trimethoxysilane (A187) and (3‐glycidoxypropyl)methyldiethoxysilane (W78) were used and studied as reactive diluents for aluminum (III) acetylacetonate (Alacac) accelerated epoxy/anhydride impregnating resin systems. The dielectric performances were studied and characterized by the dielectric dissipation factor, dielectric constant, volume resistivity, and breakdown strength. The curing behaviors and thermal properties of the cured impregnants were studied by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetry. The activation energies of different epoxy formulations were determined with Kissinger method. The results showed that W78 was effective to decrease the viscosity and had little influence on the curing reaction. The cured sample of 15 parts‐of‐W78‐containing‐epoxy resin/methyl‐hexahydrophthalic anhydride (MHHPA) accelerated by Alacac exhibits good dielectric and heat resistant performances with a dielectric dissipation factor below 0.04 at 155°C. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008