z-logo
Premium
A positive‐working photosensitive polyimide based on thermal cross‐linking and acidolytic cleavage
Author(s) -
Jung MyungSup,
HyeonLee Jingyu,
Choi TaeLim
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.27363
Subject(s) - polyimide , polymer chemistry , dissolution , ether , aqueous solution , polymerization , chemistry , sulfonate , polymer , materials science , organic chemistry , layer (electronics) , sodium
A novel positive‐working photosensitive polyimide (PSPI) based on a poly(hydroxyimide) (PHI), a crosslinking agent having vinyl ether groups, and a photoacid generator (PAG) was prepared. The PHI as a base resin of the three‐component PSPI was synthesized from 4,4′‐oxydiphthalic anhydride and 2,2′‐bis(3‐amino‐4‐hydroxyphenyl)hexafluoropropane through ring‐opening polymerization and subsequent thermal cyclization. 2,2′‐bis(4‐(2‐(vinyloxy)ethoxy)phenyl)propane (BPA‐DEVE) was used as a vinylether compound and diphenyliodonium 5‐hydroxynaphthalene‐1‐sulfonate was used as a PAG. The phenolic hydroxyl groups of the PHI and the vinyl ether groups of BPA‐DEVE are thermally crosslinked with acetal structures during prebake step, and the crosslinked PHI becomes completely insoluble in an aqueous basic solution. Upon exposure to UV light (365 nm) and subsequent postexposure bake (PEB), a strong acid generated from the PAG cleaves the crosslinked structures, and the exposed area is effectively solubilized in the alkaline developer. The dissolution behavior of the PSPI containing each 11.5 wt % of BPA‐DEVE and of the PAG was studied after UV exposure (365 nm) and PEB. It was found that the difference in dissolution rates between exposed and unexposed areas was enough to get high resolution. A fine positive pattern with a resolution of 5 μm in a 3.7‐μm‐thick film was obtained from the three‐component PSPI. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here