Premium
Preparation and adsorption properties of chitosan–poly(acrylic acid) nanoparticles for the removal of nickel ions
Author(s) -
Wang JianWen,
Kuo YiMing
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.27247
Subject(s) - sorption , nickel , adsorption , nanoparticle , acrylic acid , langmuir adsorption model , materials science , sorbent , particle size , ionic strength , langmuir , chemical engineering , inorganic chemistry , nuclear chemistry , chemistry , aqueous solution , organic chemistry , copolymer , nanotechnology , composite material , polymer , metallurgy , engineering
Chitosan (CS) nanoparticles with different mean sizes ranging from 100 to 195 nm were prepared by ionic gelation of CS and poly(acrylic acid) (PAA). Variations in the final solution pH value and CS : PAA volume ratio were examined systematically for their effects on nanoparticle size, intensity of surface charge, and tendency toward particle aggregation. The sorption capacity and sorption isotherms of the CS–PAA nanoparticles for nickel ions were evaluated. The parameters for the adsorption of nickel ions by the CS–PAA nanoparticles were also investigated. The CS–PAA nanoparticles could sorb nickel ions effectively. The sorption rate for nickel ions was affected significantly by the initial concentration of the solution, sorbent amount, particle size, and pH value of the solution. The samples of nanoparticles were well correlated with Langmuir's isotherm model, and the adsorption kinetics of nickel correlated well with the pseudo‐second‐order model. The maximum capacity for nickel sorption deduced from the use of the Langmuir isotherm equation was 435 mg/g, which was significantly higher than that of the micrometer‐sized CS. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008