Premium
Thermal and dynamic mechanical properties of organic–inorganic hybrid composites of itaconate‐containing poly(butylene succinate) and methacrylate‐substituted polysilsesquioxane
Author(s) -
Sakuma Takenori,
Kumagai Atsushi,
Teramoto Naozumi,
Shibata Mitsuhiro
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.27112
Subject(s) - materials science , composite material , glass transition , dynamic mechanical analysis , itaconic acid , methacrylate , polybutylene succinate , benzoyl peroxide , copolymer , polymer , polymerization
Itaconate‐unit‐containing poly(butylene succinate) (PBSI) was synthesized by the reaction of 1,4‐butanediol, succinic acid, and itaconic acid in a molar ratio of 2.0 : 1.0 : 1.0, and the obtained PBSI was reacted with methacryl‐group‐substituted polysilsesquioxane (ME‐PSQ) in the presence of benzoyl peroxide (BPO) at 130°C to produce PBSI/ME‐PSQ hybrid composites. The thermal and dynamic mechanical properties of the PBSI/ME‐PSQ hybrid composites were investigated in comparison with those of PBSI cured at 130°C in the presence of BPO. As a result, the hybrid composites showed a much higher thermal degradation temperature and storage modulus in the rubbery state than the cured PBSI (C‐PBSI). The thermal degradation temperature and storage modulus of the hybrid composites increased with increasing ME‐PSQ content. The glass‐transition temperature, measured by dynamic mechanical analysis of the hybrid composites, somewhat increased with increasing ME‐PSQ content. However, the glass‐transition temperatures of all the hybrid composites were lower than that of C‐PBSI. Although the IR absorption peak related to CC groups was not detected for C‐PBSI, some olefinic absorption peaks remained for all the hybrid composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008