z-logo
Premium
Sorption and desorption parameters of water or ethanol in light‐cured dental dimethacrylate resins
Author(s) -
Sideridou Irini D.,
Karabela Maria M.,
Vouvoudi Evagelia Ch.,
Papanastasiou Georgios E.
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.27094
Subject(s) - sorption , desorption , extraction (chemistry) , materials science , diffusion , triethylene glycol , ethanol , chromatography , chemical engineering , chemistry , nuclear chemistry , polymer chemistry , organic chemistry , adsorption , thermodynamics , physics , engineering
Two cycles of sorption/desorption of water or ethanol by light‐cured dental resins of bisphenol A glycol dimethacrylate (Bis‐GMA), bisphenol A ethoxylated dimethacrylate (Bis‐EMA) urethane dimethacrylate (UDMA) triethylene glycol dimethacrylate and decanediol dimethacrylate (D 3 MA) were studied. The experimental curves m t = f ( t ) taken for the first water sorption by poly‐Bis‐GMA, poly‐Bis‐EMA and poly‐UDMA showed a maximum. A maximum was also observed in the curve obtained for first sorption of ethanol by poly‐Bis‐GMA. In all other cases, the curves for sorption or desorption of water or ethanol showed Fickian behavior. The experimental data obtained for first sorption of water or ethanol were perfectly fitted to a new proposed equation, which predicts water or ethanol sorption with simultaneous extraction of unreacted the monomer. This equation gave us the possibility for the determination of the diffusion coefficient of the extraction of the unreacted Bis‐GMA during the water and ethanol sorption, as well as the diffusion coefficient of the extraction of the unreacted Bis‐EMA and UDMA during the water sorption. The maximum water or ethanol absorbed at equilibrium and the diffusion coefficient are determined from the second sorption/desorption cycle during which the extraction of the monomer is negligible. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here