Premium
Structure formation and characterization of PVDF hollow fiber membranes by melt‐spinning and stretching method
Author(s) -
Du ChunHui,
Xu YouYi,
Zhu BaoKu
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.26867
Subject(s) - materials science , membrane , small angle x ray scattering , composite material , spinning , melt spinning , annealing (glass) , lamellar structure , ultimate tensile strength , fiber , differential scanning calorimetry , scanning electron microscope , porosity , permeation , scattering , chemistry , biochemistry , physics , optics , thermodynamics
Melt‐spinning and stretching (MS‐S) method was proposed for preparing poly(vinylidene fluoride) (PVDF) hollow fiber membranes with excellent mechanical properties. The morphology and properties of PVDF fibers and membranes were investigated by small angle X‐ray scattering (SAXS), differential scanning calorimeter (DSC), field emission scanning electron microscope, mercury porosimeter, and tensile experiment. SAXS results indicated that the stacked lamellar structure aligned normal to the fiber axis was separated and deformed when the fibers were strained, and the long period of the strained fibers increased accordingly. Factors affecting the membrane properties were mainly spin‐draw ratio, annealing temperature, time, and stretching rate. Experimental results showed that the average pore size, porosity, and N 2 permeation of the membranes all increased with the increasing spin‐draw ratios and annealing temperatures. Annealing the nascent PVDF hollow fibers at 145°C for 12 h was suitable for attaining membranes with good performance. In addition, the amount and size of the micropores of the membrane increased obviously with stretching rate. Tensile experiment indicated PVDF hollow fiber membranes made by MS‐S process had excellent mechanical properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007