z-logo
Premium
Developing electrically conductive polypropylene/polyamide6/carbon black composites with microfibrillar morphology
Author(s) -
Garmabi Hamid,
Naficy Sina
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.26835
Subject(s) - materials science , composite material , percolation threshold , polypropylene , composite number , carbon black , annealing (glass) , conductivity , morphology (biology) , electrical resistivity and conductivity , chemistry , natural rubber , biology , electrical engineering , genetics , engineering
We have established that the PP/PA6/CB composite with 3D microfibrillar conducting network can be prepared in situ using melt spinning process. CB particles preferably were localized at the interface between polypropylene as the matrix and PA6 microfibrils, which act as the conducting paths inside the matrix. The percolation threshold of the system reduced when aspect ratio of the conducting phase was increased by developing microfibrillar morphology. The effect of annealing process on the conductivity of PP/PA6/CB composite with co‐ continuous and microfibrillar morphologies was studied. It was observed that, annealing process forces CB particles towards the interface (2D space) of PP and PA6 co‐continuous phases, and percolation threshold and critical exponent of classical percolation theory will be decreased, while the conductivity of conducting composite with microfibrillar morphology was not affected considerably by annealing process at temperatures either higher or lower than the melting point of the PA6 microfibrils. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here