z-logo
Premium
Fabricating novel thermal crosslinked ultrafine fibers via electrospinning
Author(s) -
Dai TianHe,
Yu Hao,
Zhang Kai,
Zhu MeiFang,
Chen YanMo,
Adler HansJuergen
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.26655
Subject(s) - isophorone diisocyanate , electrospinning , materials science , thermal stability , polyester , fiber , composite material , chemical engineering , solvent , dichloromethane , polyurethane , polymer chemistry , polymer , organic chemistry , chemistry , engineering
In this article, we report the preparation of a kind of novel crosslinked ultrafine fiber by electrospinning of unsaturated polyester macromonomers (UPM) and subsequent thermal crosslinking. The UPM is prepared via a two‐step reaction with poly(2‐methyl‐1,3‐propyleneadipate) diol terminated (PMPA), isophorone‐diisocyanate (IPDI) and 2‐hydroxyethyl methacrylate (HEMA). Poly(3‐hydroxyl‐butyrate‐ co ‐3‐hydroxylvalerate) (PHBV) is chosen to improve the processability of the UPM. UPM/PHBV blend ultrafine fibers are successfully electrospun with a proper mass ratio of UPM to PHBV in dichloromethane solution. The fibers are thermally crosslinked after electrospinning. Measurement results indicate that the average diameter of the fibers is about 1 μm and the crosslinked fibers have good solvent‐stability and thermal‐stability. This novel fiber has potential applications in filtration and protective coating. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 107:2142–2149, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom