z-logo
Premium
Synthesis, characterization, and thermal properties of tris (3‐aminophenyl) phosphine oxide‐based nadimide resins
Author(s) -
Sharma Pooja,
Malhotra Priti,
Narula A. K.
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.26646
Subject(s) - polymer chemistry , phosphine oxide , acetic anhydride , thermal decomposition , char , naphthalene , materials science , phthalic anhydride , curing (chemistry) , glass transition , oxide , chemistry , organic chemistry , pyrolysis , polymer , phosphine , catalysis
This article describes the synthesis, characterization, and thermal properties of nadimides obtained by reacting endo‐5‐norbornene‐2,3‐dicarboxylic acid anhydride (nadic anhydride) (NA), 4,4′‐oxodiphthalic anhydride (ODA), 1,4,5,8‐naphthalene tetra carboxylic dianhydride (NTDA) in glacial acetic acid/DMF. Structural characterization of the resins was done by elemental analysis, IR, 1 H‐NMR, and 13 C‐NMR. The DSC scan showed the endothermic transition in the temperature range of 120–270°C. Multistep decomposition was observed in the TG scan of uncured resins in nitrogen atmosphere. Isothermal curing of the resins was done at 250 and 300°C for 1 h in an air atmosphere. These cured resins were stable to (350 ± 30)°C and decomposed in a single step above this temperature. This may be due to the retro Diels Alder (RDA) reaction. The char yield of the resins increased significantly on curing. The char yield was highest for P‐2N resin and this could be due to the presence of rigid skeleton i.e. naphthalene. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here