Premium
Preparation, curing kinetics, and thermal properties of bisphenol fluorene epoxy resin
Author(s) -
Dai Zhen,
Li Yanfang,
Yang Shuguang,
Zong Chengzhong,
Lu Xukui,
Xu Jian
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.26585
Subject(s) - diglycidyl ether , epoxy , thermogravimetric analysis , differential scanning calorimetry , curing (chemistry) , materials science , bisphenol a , glass transition , fluorene , polymer chemistry , fourier transform infrared spectroscopy , char , kinetics , composite material , thermosetting polymer , ether , chemical engineering , polymer , chemistry , organic chemistry , pyrolysis , thermodynamics , physics , quantum mechanics , engineering
Diglycidyl ether of 9,9‐bis(4‐hydroxyphenyl) fluorene (DGEBF) was synthesized to introduce more aromatic structures into an epoxy resin system. The structure of DGEBF was characterized with Fourier transform infrared and 1 H‐NMR. 4,4′‐Diaminodiphenylmethane (DDM) was used as the curing agent for DGEBF, and differential scanning calorimetry was applied to study the curing kinetics. The glass‐transition temperature of the cured DGEBF/DDM, determined by dynamic mechanical analysis, was 260°C, which was about 100°C higher than that of widely used diglycidyl ether of bisphenol A (DGEBA). Thermogravimetric analysis was used to study the thermal degradation behavior of the cured DGEBF/DDM system: its onset degradation temperature was 370°C, and at 700°C, its char yield was about 27%, whereas that of cured DGEBA/DDM was only 14%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom