z-logo
Premium
Effect of viscoelasticity in the film‐blowing process
Author(s) -
Beaulne Michel,
Mitsoulis Evan
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.26325
Subject(s) - viscoelasticity , constitutive equation , mechanics , newtonian fluid , finite element method , relaxation (psychology) , materials science , mathematics , thermodynamics , physics , composite material , psychology , social psychology
Numerical simulations have been undertaken for the film‐blowing process of viscoelastic fluids under different operating conditions. Viscoelasticity is described by an integral constitutive equation of the K‐BKZ type with a spectrum of relaxation times, which can fit the experimental data well for the shear and extensional viscosities and the normal stresses measured in shear flow. Nonisothermal conditions are considered by applying the Morland–Lee hypothesis, which incorporates the appropriate shift factor and pseudotime into the constitutive equation. The momentum and energy equations are expressed in the machine direction only by using a quasi‐one‐dimensional approach introduced earlier by Pearson and Petrie. The resulting system of differential equations is solved using the finite element method and the Newton‐Raphson iterative scheme. The method of solution was first checked against the Newtonian and Maxwell results for various film characteristics given earlier. The simulations are compared with available experimental data and previous simulations in terms of film shape, velocity, stresses, and temperature. The present results show that the existing modeling of force balances is inadequate for quantitative agreement with the experimental studies. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here