Premium
Poly(acrylamide‐allyl glycidyl ether) cryogel as a novel stationary phase in dye‐affinity chromatography
Author(s) -
Demiryas Nazan,
Tüzmen Nalan,
Galaev Igor Yu,
Pişkin Erhan,
Denizli Adil
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.26187
Subject(s) - desorption , human serum albumin , adsorption , aqueous solution , polymer chemistry , polymerization , swelling , monomer , monolithic hplc column , chemistry , nuclear chemistry , acrylamide , materials science , chromatography , high performance liquid chromatography , polymer , organic chemistry , composite material
Poly(acrylamide‐allyl glycidyl ether) [poly(AAm‐AGE)] cryogel was prepared by bulk polymerization which proceeds in an aqueous solution of monomers frozen inside a glass column (cryo‐polymerization). After thawing, the monolithic cryogel contains a continuous polymeric matrix having interconnected pores of 10–100 μm size. Cibacron Blue F3GA was immobilized by covalent binding onto poly(AAm‐AGE) cryogel via epoxy groups. Poly(AAm‐AGE) cryogel was characterized by swelling studies, FTIR, scanning electron microscopy, and elemental analysis. The equilibrium swelling degree of the poly(AAm‐AGE) monolithic cryogel was 6.84 g H 2 O/g cryogel. Poly(AAm‐AGE) cryogel containing 68.9 μmol Cibacron Blue F3GA/g was used in the adsorption/desorption of human serum albumin (HSA) from aqueous solutions and human plasma. The nonspecific adsorption of HSA was very low (0.2 mg/g). The maximum amount of HSA adsorption from aqueous solution in acetate buffer was 27 mg/g at pH 5.0. Higher HSA adsorption value was obtained from human plasma (up to 74.2 mg/g). Desorption of HSA with a purity of 92% from Cibacron Blue F3GA attached poly(AAm‐AGE) cryogel was achieved using 0.1 M Tris/HCl buffer containing 0.5 M NaCl. It was observed that HSA could be repeatedly adsorbed and desorbed with poly(AAm‐AGE) cryogel without significant loss in the adsorption capacity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007