Premium
Biodegradable polyurethane based on random copolymer of L ‐lactide and ϵ‐caprolactone and its shape‐memory property
Author(s) -
Wang Wenshou,
Ping Peng,
Chen Xuesi,
Jing Xiabin
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.26039
Subject(s) - materials science , ultimate tensile strength , crystallinity , polyurethane , caprolactone , elongation , copolymer , lactide , composite material , amorphous solid , fourier transform infrared spectroscopy , polymer chemistry , polymer , chemical engineering , chemistry , organic chemistry , engineering
A series of biodegradable polyurethanes (PUs) are synthesized from the copolymer diols prepared from L ‐lactide and ε‐caprolactone (CL), 2,4‐toluene diisocyanate, and 1,4‐butanediol. Their thermal and mechanical properties are characterized via FTIR, DSC, and tensile tests. Their T g s are in the range of 28–53°C. They have high modulus, tensile strength, and elongation ratio at break. With increasing CL content, the PU changes from semicrystalline to completely amorphous. Thermal mechanical analysis is used to determine their shape‐memory property. When they are deformed and fixed at proper temperatures, their shape‐recovery is almost complete for a tensile elongation of 150% or a compression of 2‐folds. By changing the content of CL and the hard‐to‐soft ratio, their T g s and their shape‐recovery temperature can be adjusted. Therefore, they may find wide applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4182–4187, 2007