Premium
Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame‐retarded with 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide additives
Author(s) -
Schartel B.,
Balabanovich A. I.,
Braun U.,
Knoll U.,
Artner J.,
Ciesielski M.,
Döring M.,
Perez R.,
Sandler J. K. W.,
Altstädt V.,
Hoffmann T.,
Pospiech D.
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.25660
Subject(s) - cone calorimeter , epoxy , limiting oxygen index , flammability , fire retardant , char , materials science , composite material , oxide , thermosetting polymer , pyrolysis , organic chemistry , chemistry , metallurgy
Abstract The pyrolysis of an epoxy resin and the fire behavior of corresponding carbon fiber‐reinforced composites, both flame‐retarded with either 10‐ethyl‐9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide or 1,3,5‐tris[2‐(9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide‐10‐)ethyl]1, 3,5‐triazine‐2,4,6(1H,3H,5H)‐trione, are investigated. The different fire retardancy mechanisms are discussed, and their influence on the fire properties assessed, in particular for flammability (limiting oxygen index, UL 94) and developing fires (cone calorimeter with different external heat fluxes of 35, 50, and 70 kW m −2 ). Adding the flame retardants containing 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide affects the fire behavior by both condensed phase and gas phase mechanisms. Interactions between the additives and the epoxy resin result in a change in the decomposition pathways and an increased char formation. The release of phosphorous products results in significant flame inhibition. The fire properties achieved are thus interesting with respect to industrial exploration. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2260–2269, 2007