Premium
Processable and colorless fluorinated poly(ether imide)s based on an isopropylidene‐containing bis(ether anhydride) and various aromatic bis(ether amine)s bearing trifluoromethyl groups
Author(s) -
Huang ShengYu,
Yang ChinPing,
Hsiao ShengHuei
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.25630
Subject(s) - ether , glass transition , trifluoromethyl , imide , solubility , materials science , polymer chemistry , thermal stability , chemistry , organic chemistry , polymer , composite material , alkyl
A series of novel organosoluble and light‐colored fluorinated poly(ether imide)s (PEIs) ( IV ) having inherent viscosities of 0.43–0.59 dL/g were prepared from 4,4′‐[1,4‐phenylenbis(isopropylidene‐1,4‐phenyleneoxy)]diphthalic anhydride ( I ) and various trifluoromethyl‐substituted aromatic bis(ether amine)s by a standard two‐step process with thermal and chemical imidization of poly(amic acid) precursors. These PEIs showed excellent solubility in many organic solvents and could be solution‐cast into transparent and tough films. These films were essentially colorless, with an UV–visible absorption edge of 361–375 nm and a very low b * value (a yellowness index) of 15.3–17.0. They also showed good thermal stability with glass‐transition temperature of 191–248°C, 10% weight loss temperature in excess of 494°C, and char yields at 800°C in nitrogen more than 39%. The thermally cured PEI films showed good mechanical properties with tensile strengths of 83–96 MPa, elongations at break of 8–11%, and initial moduli of 1.7–2.0 GPa. They possessed lower dielectric constants of 3.25–3.72 (1 MHz). In comparison with the V series nonfluorinated PEIs, the IV series showed better solubility, lower color intensity, and lower dielectric constants. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 620–628, 2007