Premium
Determination of the molecular characteristics of commercial polyethylenes with different architectures and the relation with the melt flow index
Author(s) -
Teresa RodríguezHernández M.,
AnguloSánchez J. L.,
PérezChantaco A.
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.25625
Subject(s) - branching (polymer chemistry) , melt flow index , polyethylene , molar mass distribution , gel permeation chromatography , viscometer , polymer , materials science , molecular mass , low density polyethylene , polymer chemistry , high density polyethylene , analytical chemistry (journal) , viscosity , chemistry , thermodynamics , chromatography , composite material , organic chemistry , copolymer , physics , enzyme
Abstract The molecular weight distribution curves of several commercial polyethylene samples were evaluated by high‐temperature gel permeation chromatography with two detectors (a refractive‐index detector and a viscometer) to determine the molecular sizes and architectures (branching). The polymer samples included high‐ and low‐density polyethylenes with different molecular weight distributions (wide, medium, unimodal, and bimodal) from nine producers. The results were tested against the melt flow index and zero‐shear melt viscosity to find correlations. The data for high‐density polyethylene correlated well with the molecular weight, whereas the data for low‐density polyethylene did not correlate. However, when the weight‐average molecular weight was corrected by the branching parameter and a factor form, all the polyethylene samples fit a single equation. These results indicate that the melt flow index is dependent not only on the molecular weight but also on the molecular shape, including branching. The relation accounted for samples of different resin producers, molecular weights (65,000–638,000), and polydispersities (2.9–20). The use of the branching parameter for the correction of the molecular weight allowed the correlation of these parameters despite differences in the technologies, molecular weights, and molecular architectures. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1572–1578, 2007