Premium
Master curve and time–temperature–transformation cure diagram of lignin–phenolic and phenolic resol resins
Author(s) -
Alonso M. V.,
Oliet M.,
García J.,
Rodríguez F.,
Echeverría J.
Publication year - 2006
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.25497
Subject(s) - materials science , glass transition , curing (chemistry) , vitrification , phenol , arrhenius equation , chemical engineering , composite material , polymer chemistry , activation energy , organic chemistry , polymer , chemistry , medicine , engineering , andrology
The aim of this work is to generate both a master curve of resol resins based on the time–temperature superposition principle and their TTT cure diagrams. The samples used for this purpose were lignin–phenolic and phenol–formaldehyde resol resins. A TMA technique was employed to study the gelation of resol resins. In addition, a DSC technique was employed to determine the kinetic parameters through the Ozawa method, which allowed us to obtain isoconversional curves from the data fit to the Arrhenius expression. Establishing the relationship between the glass‐transition temperature and curing degree allowed the determination of the vitrification lines of the resol resins. Thus, using the experimental data obtained by TMA and DSC, we generated a TTT cure diagram for each of resins studied. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3362–3369, 2007