Premium
Peroxide crosslinking of a styrene‐free unsaturated polyester
Author(s) -
MironiHarpaz I.,
Narkis M.,
Siegmann A.
Publication year - 2007
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.25385
Subject(s) - polyester , peroxide , glass transition , materials science , styrene , polymer chemistry , polymer , monomer , benzoyl peroxide , swelling , copolymer , composite material , chemistry , organic chemistry
Abstract Thermoset unsaturated polyesters are usually obtained by the crosslinking of unsaturated polyester chains dissolved in an unsaturated, reactive, monomeric diluent, which is usually styrene. This article describes a new approach in which styrene‐free unsaturated polyester chains are intrinsically cured into a crosslinked matrix. The gel time, gel content, swelling degree, glass‐transition temperature, dynamic mechanical properties, tensile properties, and molecular weight between crosslinks (calculated according to both the Flory–Rehner equation and the theory of rubber elasticity) of the crosslinked polymer are studied as a function of the peroxide concentration. All properties change considerably upon the addition of small amounts of peroxide (between 1 and 2 wt %) and change to a lesser extent with higher peroxide concentrations (up to 6 wt %). The thermal properties of the isolated gel fraction are studied as a function of the peroxide concentration. The sol fraction demonstrates a plasticizing effect on the crosslinked network, affecting the glass‐transition temperature and stress–strain behavior of the crosslinked polymer. In light of the crosslink densities derived from swelling experiments, a molecular structure and crosslinking mechanism are suggested for the gel fractions of 1 and 6 wt % peroxide crosslinked unsaturated polyester chains. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007