Premium
Synthesis and properties of new polyamides based on a hydroxyethyl cinnamide extended from 3,5‐diaminobenzoic acid
Author(s) -
Onciu Marioara
Publication year - 2006
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.25302
Subject(s) - polyamide , triphenyl phosphite , thermogravimetric analysis , condensation polymer , differential scanning calorimetry , thermal stability , gel permeation chromatography , polymer chemistry , glass transition , polymer , pyridine , materials science , dicarboxylic acid , chemistry , organic chemistry , physics , thermodynamics
A series of new aromatic polyamides containing cinnamide pendent units were prepared from 2′‐(cinnamide)ethyl‐3,5‐diaminobenzoate and various aromatic dicarboxylic acids by the direct polycondensation reaction, with triphenyl phosphite and pyridine as condensing agents. The polyamides were characterized by 1 H NMR, IR, and UV spectroscopy, and gel permeation chromatography. Their thermal stability was studied by thermogravimetric analysis in air, and differential scanning calorimetry. These polymers were readily soluble in polar aprotic solvents and can be cast from their solutions in flexible and tough films. Glass transition temperatures ( T g s) of these polyamides were observed in the range of 225–245°C. Their inherent viscosities varied from 0.77 to 1.12 dL/g that corresponded to weight–average and number–average molecular weights of 39,000–72,700 and 18,800–29,000, respectively. These polymers can be photochemically crosslinked. The photochemical aspects were revealed by means of UV–vis and IR analyses onto thin films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2013–2020, 2007