Premium
Crosslinked poly(vinyl alcohol) and starch composite films. II. Physicomechanical, thermal properties and swelling studies
Author(s) -
Ramaraj B.
Publication year - 2006
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.25237
Subject(s) - ultimate tensile strength , materials science , vinyl alcohol , swelling , composite material , differential scanning calorimetry , starch , sunflower oil , solubility , absorption of water , composite number , young's modulus , polymer , chemistry , organic chemistry , biochemistry , physics , thermodynamics
Poly(vinyl alcohol) (PVA) was blended with 10, 20, 30, 40, and 50 wt % of starch with and without crosslinking by solution casting process. The solution‐casted films were dried and tested for physicomechanical properties like tensile strength, tensile elongation, tensile modulus, tear and burst strengths, density, and thermal analysis by differential scanning calorimetry (DSC). These PVA/starch films were further characterized for moisture content; solubility resistance in water, 5% acetic acid, 50% ethanol, and sunflower oil; and swelling characteristics in 50% ethanol and sunflower oil. The crosslinked PVA/starch composite films show significant improvement in tensile strength, tensile modulus, tear and burst strengths, and solubility resistance over the uncrosslinked films. Between the crosslinked and uncrosslinked films, the uncrosslinked films have higher tensile elongation, moisture content, moisture absorption, and swelling over the crosslinked films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 909–916, 2007