z-logo
Premium
Optimal policies for BMA polymerization in nonisothermal batch reactor
Author(s) -
Sundaram B. S.,
Upreti S. R.,
Lohi A.
Publication year - 2006
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.24510
Subject(s) - monomer , polymerization , maximization , jacobian matrix and determinant , batch reactor , minification , materials science , polymer , process (computing) , thermodynamics , methacrylate , process engineering , polymer chemistry , mathematical optimization , computer science , mathematics , chemistry , physics , engineering , organic chemistry , catalysis , composite material , operating system
In this paper, the optimal policies for bulk polymerization of n ‐butyl methacrylate (BMA) are determined in a nonisothermal batch reactor. Four objectives are realized for BMA polymerization based on a detailed process model. The objectives are: (i) maximization of monomer conversion in a specified operation time, (ii) minimization of operation time for a specified, final monomer conversion, (iii) maximization of monomer conversion for a specified, final number average polymer molecular weight, and (iv) maximization of monomer conversion for a specified, final weight average polymer molecular weight. For each objective, the optimal temperature policy of heat‐exchange fluid inside reactor jacket is determined. The temperature of the heat‐exchange fluid is considered as a function of a specified variable. Necessary equations are provided to suitably transform the process model in terms of a specified variable other than time, and to evaluate the elements of Jacobian to help in the accurate solution of the process model. A genetic algorithm‐based optimal control method is applied to realize the objectives. The resulting optimal policies of this application reveal considerable improvements in the batch production of poly(BMA). © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 2799–2809, 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom