z-logo
Premium
Polyimide foams with ultralow dielectric constants
Author(s) -
Chu HuiJuan,
Zhu BaoKu,
Xu YouYi
Publication year - 2006
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.24364
Subject(s) - polyimide , dielectric , materials science , thermal stability , dielectric loss , monomer , homogeneous , yield (engineering) , polymer chemistry , composite material , chemical engineering , polymer , chemistry , organic chemistry , layer (electronics) , physics , optoelectronics , engineering , thermodynamics
To explore ultralow dielectric constant polyimide, the crosslinked polyimide foams (PIFs) were prepared from 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), 4,4′‐oxydianiline (ODA), and 2,4,6‐triaminopyrimidine (TAP) via a poly(ester–amine salt) (PEAS) process. FTIR measurements indicated that TAP did not yield a negative effect on imidization of PEAS precursors. SEM measurement revealed the homogeneous cell structure. Through using TAP as a crosslinking monomer, the mechanical properties of PIFs could be improved in comparison with uncrosslinked BTDA/ODA based PIF. The crosslinked PIFs still exhibited excellent thermal stability with 5% weight loss temperatures higher than 520°C. In the field with frequency higher than 100 Hz, the dielectric constants of the obtained PIFs ranged from 1.77 to 2.4, and the dielectric losses were smaller than 3 × 10 −2 at 25–150°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1734–1740, 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom