z-logo
Premium
Structure and properties of nanocomposites based on poly(butylene succinate) and organically modified montmorillonite
Author(s) -
Ray Suprakas Sinha,
Okamoto Kazuaki,
Okamoto Masami
Publication year - 2006
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.23940
Subject(s) - montmorillonite , nanocomposite , materials science , polybutylene succinate , dynamic mechanical analysis , ultimate tensile strength , silicate , composite material , polymer chemistry , polymer , chemical engineering , engineering
Poly(butylene succinate) and organically modified montmorillonite nanocomposites with there different compositions were prepared via melt blending in a twin‐screw extruder. The structure of the nanocomposites was studied with X‐ray diffraction and transmission electron microscopy, which revealed the formation of intercalated nanocomposites, regardless of the silicate loading. Dynamic mechanical analysis revealed a substantial increase in the storage modulus of the nanocomposites over the entire temperature range investigated. The tensile property measurements showed a relative increase in the stiffness with a simultaneous decrease in the yield strength in comparison with that of neat poly(butylene succinate). The oxygen gas barrier property of neat poly(butylene succinate) improved after nanocomposite preparation with organically modified montmorillonite. The effect of the layered‐silicate loading on the melt‐state linear viscoelastic behavior of the intercalated nanocomposites was also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 777–785, 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here