Premium
Studies on mechanical, thermal, and morphology of diglycidylether‐terminated polydimethylsiloxane‐modified epoxy–bismaleimide matrices
Author(s) -
Kumar R. Suresh,
Alagar M.
Publication year - 2006
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.23799
Subject(s) - epoxy , materials science , flexural strength , heat deflection temperature , composite material , thermogravimetric analysis , ultimate tensile strength , differential scanning calorimetry , glass transition , curing (chemistry) , izod impact strength test , polydimethylsiloxane , dynamic mechanical analysis , polymer , chemistry , organic chemistry , physics , thermodynamics
An epoxy matrix system modified by diglycidylether‐terminated polydimethylsiloxane (DGETPDMS) and bismaleimide (BMI) was developed. Epoxy systems modified with 4, 8, and 12% (by wt) of DGETPDMS were made using epoxy resin and DGETPDMS, with diaminodiphenylmethane as the curing agent. The DGETPDMS‐toughened epoxy systems were further modified with 4, 8, and 12% (by wt) of BMI, namely ( N , N ′‐bismaleimido‐4,4′‐diphenylmethane). DGETPDMS/BMI/epoxy matrices were characterized using differential scanning calorimetry, thermogravimetric analysis, and heat deflection temperature analysis. The matrices, in the form of castings, were characterized for their mechanical properties, viz. tensile strength, flexural strength, and impact test, as per ASTM methods. Mechanical studies indicate that the introduction of DGETPDMS into epoxy resin improves the impact strength, with reduction in tensile strength, flexural strength, and glass transition temperature, whereas the incorporation of BMI into epoxy resin enhances the mechanical and thermal properties according to its percentage content. However, the introduction of both DGETPDMS and BMI enhances the values of thermomechanical properties according to their percentage content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 668–674, 2006