Premium
Comparison of propylene/ethylene copolymers prepared with different catalysts
Author(s) -
Stephens C. H.,
Poon B. C.,
Ansems P.,
Chum S. P.,
Hiltner A.,
Baer E.
Publication year - 2006
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.23788
Subject(s) - comonomer , materials science , lamellar structure , copolymer , lamella (surface anatomy) , crystallinity , glass transition , spherulite (polymer physics) , thermoplastic elastomer , polymer chemistry , melting point , ethylene , chemical engineering , composite material , catalysis , polymer , chemistry , organic chemistry , engineering
This study compared a series of experimental propylene/ethylene copolymers synthesized by a transition metal‐based, postmetallocene catalyst (xP/E) with homogeneous propylene/ethylene copolymers synthesized by conventional metallocene catalysts (mP/E). The properties varied from thermoplastic to elastomeric over the broad composition range examined. Copolymers with up to 30 mol % ethylene were characterized by thermal analysis, density, atomic force microscopy, and stress–strain behavior. The xP/Es exhibited noticeably lower crystallinity than mP/Es for the same comonomer content. Correspondingly, an xP/E exhibited a lower melting point, lower glass transition temperature, lower modulus, and lower yield stress than an mP/E of the same comonomer content. The difference was magnified as the comonomer content increased. Homogeneous mP/Es exhibited space‐filling spherulites with sharp boundaries and uniform lamellar texture. Increasing comonomer content served to decrease spherulite size until spherulitic entities were no longer discernable. In contrast, axialites, rather than spherulites, described the irregular morphological entities observed in xP/Es. The lamellar texture was heterogeneous in terms of lamellar density and organization. At higher comonomer content, embryonic axialites were dispersed among individual randomly arrayed lamellae. These features were characteristic of a copolymer with heterogeneous chain composition. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1651–1658, 2006