Premium
Dynamic viscoelasticity of low‐density polyethylene/in‐situ‐grafted carbon black composite
Author(s) -
Wu Gang,
Zheng Qiang,
Zhang Mingqiu,
Hou Yanhui
Publication year - 2006
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.23410
Subject(s) - low density polyethylene , materials science , carbon black , viscoelasticity , composite material , polyethylene , maleic anhydride , polymer chemistry , polymer , composite number , monomer , copolymer , natural rubber
The study on the dynamic viscoelastic properties of grafted carbon black ( g ‐CB) filled low‐density polyethylene (LDPE) was carried out. Because of formation of CB networking, the characteristic modulus plateau and loss tangent arc appears. Addition of grafting monomer like butyl acrylate (BA) and acroleic acid (AA) enhances the interaction between particles and matrix due to accelerated formation of micronetworking in the composites induced by forming branch chains of AA and BA with multiunit. The decrease of the temperature corresponding to α c mechanical relaxation together with AA (BA) addition given by the position of loss tangent (tan δ) peak for LDPE is owed to the formation of long‐chain polymer grafted between CB and the matrix, which facilitates the slip of the lamella of LDPE. The influence of maleic anhydride (MA) on enhancing interaction between LDPE and CB is not so pronounced, as compared with AA and BA because of no formation of long chain between CB particle and polymer matrix. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4127–4132, 2006