z-logo
Premium
Synthesis and characterization of soluble hyperbranched polymer via initiator‐fragment incorporation radical polymerization of divinylbenzene with dimethyl 2,2′‐azobisisobutyrate
Author(s) -
Hirano Tomohiro,
Higashida Naoki,
Wang Hongwei,
Sato Makiko Seno Tsuneyuki
Publication year - 2006
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.23393
Subject(s) - divinylbenzene , polymer chemistry , polymerization , radical polymerization , chemistry , tetrahydrofuran , polymer , molar mass distribution , organic chemistry , solvent , copolymer , styrene
The homopolymerization of divinylbenzene (DVB) as an excellent crosslinker (0.20 mol/L) with dimethyl 2,2′‐azobisisobutyrate (MAIB) proceeded homogeneously without any gelation at 80°C in benzene when the MAIB concentrations as high as 0.30–0.50 mol/L were used, yielding soluble polymers. In the polymerization at the concentrations of [DVB] = 0.20 mol/L and [MAIB] = 0.50 mol/L, the polymer yield increased with time and leveled off over 90 min. The molecular weight and molecular weight distribution increased with polymer yield. The vinyl groups of DVB were observed to be almost completely consumed in about 80 min, by FT near‐IR spectroscopic analysis. The homogeneous polymerization system involved ESR‐observable polymer radical, the concentration of which increased with time up to 3.4 × 10 −5 mol/L. The polymer formed in the polymerization for 2 h consisted of 46 mol % of DVB unit and 54 mol % of the methoxycarbonylpropyl group as MAIB fragment, indicating that an initiator‐fragment incorporation radical polymerization proceeds in the present polymerization. The polymer was soluble in benzene, tetrahydrofuran, ethyl acetate, chloroform, acetone, and N , N ‐dimethylformamide, while it was insoluble in n ‐hexane, acetonitrile, dimethyl sulfoxide, methanol, and water. The results of the multiangle laser light scattering and viscometric measurements revealed that the individual polymer molecules were formed as hyperbranched polymer nanoparticles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 664–670, 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here