Premium
Granular urea‐formaldehyde slow‐release fertilizer with superabsorbent and moisture preservation
Author(s) -
Guo Mingyu,
Liu Mingzhu,
Liang Rui,
Niu Aizhen
Publication year - 2006
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.22892
Subject(s) - urea formaldehyde , fertilizer , urea , moisture , acrylic acid , chemical engineering , superabsorbent polymer , materials science , chemistry , polymerization , formaldehyde , water content , controlled release , polymer chemistry , polymer , composite material , organic chemistry , copolymer , adhesive , layer (electronics) , engineering , geotechnical engineering
To improve the utilization of fertilizer and water resource at the same time, a new type of slow‐release fertilizer with superabsorbent and moisture preservation was developed, with the combination of slow‐release technique and superabsorbent polymers. The coatings were formed by the inverse phase polymerization technique. The element analysis results showed that the product contained 22.58% nitrogen element, and the water absorbency of the product was 94 times its own weight if it was allowed to swell in tap water at room temperature for 2 h. The results of the slow‐release behavior of N and the water absorbency and retention properties in soil showed that the product not only had good slow‐release property but also had excellent water absorbency and water retention capacity, which was a significant advantage over the normal slow‐release or controlled‐release fertilizers. The effects of the amount of initiator, crosslinker, reaction time, and the degree of neutralization of acrylic acid on water absorbency were investigated and optimized. At the same, a rather new and simple method was used to make homogeneous urea‐formaldehyde granules. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3230–3235, 2006