z-logo
Premium
Study of the flexural modulus of natural fiber/polypropylene composites by injection molding
Author(s) -
Shibata Shinichi,
Cao Yong,
Fukumoto Isao
Publication year - 2006
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.22609
Subject(s) - composite material , materials science , flexural strength , flexural modulus , fiber , kenaf , compression molding , natural fiber , polypropylene , modulus , young's modulus , synthetic fiber , mold
Effect of fiber compression on flexural modulus of the natural fiber composites was examined. The kenaf, bagasse, and polypropylene were mixed into pellets, and composites were fabricated by injection molding. To predict flexural modulus of the composites, the Young's modulus of kenaf and bagasse fiber were measured. Using the obtained Young's modulus, the flexural modulus of the composites was predicted by Cox's model that incorporates the effect of fiber compression. It was found that those fibers with high Young's modulus were more compressed than that with low Young's modulus. Moreover, the distribution of fiber length and orientation in the composites were also investigated. To calculate the orientation factor for the prediction model, the distribution function of fiber orientation was determined to a triangular function. The flexural modulus of the composites increased with increase of volume fraction. The predicted values were in good agreement with the experimental values. Furthermore, it was revealed by SEM that the porous structure of the natural fibers was compressed. The fiber compression ratio (3.6) in bagasse was higher than that in kenaf (1.4) due to the difference in porous structure. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 911–917, 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here