Premium
Study on the grafting of PET onto the glass fiber surface during in situ solid‐state polycondensation
Author(s) -
Yan Weixia,
Han KeQing,
Zhou Hongmei,
Yu MuHuo
Publication year - 2005
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.22552
Subject(s) - materials science , fiber , fourier transform infrared spectroscopy , differential scanning calorimetry , glass fiber , grafting , condensation polymer , composite material , glass transition , polymer chemistry , synthetic fiber , thermoplastic , chemical engineering , polymer , physics , engineering , thermodynamics
An in situ solid‐state polymerization process was developed to produce long glass fiber reinforced poly(ethylene terephthalate) (PET) composites. As reported in our last article, one advantage of this new process is that the good wetting of reinforcing fiber can be obtained for using low‐viscosity oligomer as raw materials. In this article, the grafting of PET macromolecular chain onto the surface of reinforcing glass fiber during in situ solid‐state polycondensation (SSP) will be investigated, which was believed to be another advantage for this new process and should be very important for thermoplastic composite. The reinforcing glass fiber after removing ungrafted PET from a long glass fiber reinforced PET composite by solvent extraction was investigated by SEM, pyrolysis‐gas chromatography mass spectrometry (Py‐GC/MS), DSC, and FTIR. The information from morphology of SEM photos of glass fiber surface, the spectrum of Py‐GC/MS, the melt peak at differential scanning calorimetric (DSC) curve, and the spectrum of Fourier transform infrared Raman spectroscopy (FTIR) gave a series evidence to prove the presence of grafted PET layer on the surface of silane‐coupling‐treated glass fiber. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 775–781, 2006