z-logo
Premium
Melting behavior and nonisothermal crystallization kinetics of polyamide 6/polyamide 66 molecular composites via in situ polymerization
Author(s) -
Li Yulin,
Liu Hongzhi,
Zhang Ying,
Yang Guisheng
Publication year - 2005
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.22392
Subject(s) - crystallization , polyamide , materials science , differential scanning calorimetry , crystallinity , nucleation , composite material , composite number , polymerization , polymer chemistry , kinetics , avrami equation , crystallization of polymers , polymer , chemical engineering , chemistry , thermodynamics , organic chemistry , physics , quantum mechanics , engineering
The melting behavior and nonisothermal crystallization kinetics of pure polyamide 6 (PA 6) and its molecular composites with polyamide 66 (PA 66) were investigated with differential scanning calorimetry. The PA 6/PA 66 composites had one melting peak, whereas the coextruded PA 6/PA 66 blends had two melting peaks. With the addition of PA 66 to PA 6 via in situ anionic polymerization, the melting temperature, crystallization temperature, and crystallinity of PA 6 in the composites decreased. The half‐time of nonisothermal crystallization increased for a PA 6/PA 66 molecular composite containing 12 wt % PA 66, in comparison with that of pure PA 6. The commonly used Ozawa equation was used to fit the nonisothermal crystallization of pure PA 6 and its composites. The Ozawa exponent values in the primary stage were equal to 1.28–3.03 and 1.28–2.97 for PA 6 and its composite with 12 wt % PA 66, respectively, and this revealed that the mechanism of primary crystallization of PA 6 and PA 6/PA 66 was mainly heterogeneous nucleation and growth. All the results indicated that the incorporation of PA 66 into PA 6 at the molecular level retarded the crystallization of PA 6. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2172–2177, 2005

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here