z-logo
Premium
Thermal and mechanical properties of plasticized poly( L ‐lactide) nanocomposites with organo‐modified montmorillonites
Author(s) -
Shibata Mitsuhiro,
Someya Yoshihiro,
Orihara Masato,
Miyoshi Masanao
Publication year - 2005
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.22268
Subject(s) - materials science , nanocomposite , ultimate tensile strength , composite number , composite material , ethylene glycol , lactide , glass transition , plasticizer , intercalation (chemistry) , polymer chemistry , copolymer , chemical engineering , polymer , chemistry , organic chemistry , engineering
Nanocomposites of poly(lactide) (PLA) and the PLA plasticized with diglycerine tetraacetate (PL‐710) and ethylene glycol oligomer containing organo‐modified montmorillonites (ODA‐M and PGS‐M) by the protonated ammonium cations of octadecylamine and poly(ethylene glycol) stearylamine were prepared by melt intercalation method. In the X‐ray diffraction analysis, the PLA/ODA‐M and plasticized PLA/ODA‐M composites showed a clear enlargement of the difference of interlayer spacing between the composite and clay itself, indicating the formation of intercalated nanocomposite. However, a little enlargement of the interlayer spacing was observed for the PLA/PGS‐M and plasticized PLA/PGS‐M composites. From morphological studies using transmission electron microscopy, a finer dispersion of clay was observed for PLA/ODA‐M composite than PLA/PGS‐M composite and all the composites using the plasticized PLA. The PLA and PLA/PL‐710 composites containing ODA‐M showed a higher tensile strength and modulus than the corresponding composites with PGS‐M. The PLA/PL‐710 (10 wt %) composite containing ODA‐M showed considerably higher elongation at break than the pristine plasticized PLA, and had a comparable tensile modulus to pure PLA. The glass transition temperature ( T g ) of the composites decreased with increasing plasticizer. The addition of the clays did not cause a significant increase of T g . © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here