z-logo
Premium
The linear viscoelastic properties of copolypropylene–clay nanocomposites
Author(s) -
Zhong Weixia,
Qiao Xiuying,
Sun Kang,
Zhang Guoding,
Chen Xiaodong
Publication year - 2005
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.22244
Subject(s) - nanocomposite , materials science , viscoelasticity , rheology , montmorillonite , activation energy , modulus , relaxation (psychology) , intercalation (chemistry) , dispersion (optics) , clay minerals , polymer , matrix (chemical analysis) , composite material , mineralogy , chemistry , organic chemistry , psychology , social psychology , physics , optics
The linear viscoelastic properties of copolypropylene (cPP)–clay nanocomposites (cPPCNs) prepared by melt intercalating with different amounts of clay were extensively examined by rheological measurements. Meanwhile, the clay effects on the cPP confinements were first estimated by calculating the activation energy of different cPP moving units, including the whole molecular chain, the chain segment, and smaller unit such as chain link. The results showed that the stability of cPPCNs melts wrecked when the clay loading was above 5 wt %. An increase in clay loading of cPPCNs gave rise to a strong low frequency solid‐like response ( G ′ > G ″). Unlike the matrix polymer, cPPCN5 (with 5 wt % clay) exhibited a relaxation plateau as relaxation time prolonged above 100 s, and displayed a maximal linear modulus. The variations of the activation energy of different cPP moving units revealed that the mobility of cPP molecular chains was restricted by clay layers, while these restrictions were not only related to the clay loadings but also largely depended on the clay dispersion status in the matrix. The motions of cPP chain segments were greatly limited at 3–5 wt % loading of clay, but drastically activated with the addition of 7 wt % clay due to the increasing stacks of clay layers within the matrix. However, it was found that the presence of clay had little effect on the mobility of small cPP moving units such as chain links. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1523–1529, 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here