z-logo
Premium
Study on the melt fracture of metallocene poly(ethylene‐octene) in capillary flow
Author(s) -
Tao Zhenghong,
Huang JanChan
Publication year - 2005
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.22198
Subject(s) - die swell , materials science , composite material , shear (geology) , shear rate , rheometer , capillary action , shear stress , melt flow index , viscosity , extrusion , rheology , copolymer , polymer
Shear viscosity and melt fracture of a metallocene poly(ethylene‐octene) were studied using a capillary rheometer and dies with different lengths. The true wall shear stresses determined at zero die length showed a dip at high shear rates. The shear viscosity was derived from the true wall shear stress. With increasing shear rates, the extrudate staged from smooth to three types of melt fracture with regular patterns, and then turned into irregular shapes. Three types of regular melt fractures—sharkskin, helix, and spiral (in sequence)—were observed with an increase of the shear rates. The wavelength of the regular melt fracture was measured from extrudates, and the corresponding frequency was calculated. The frequency increased at elevated melt temperatures. Both shear viscosity and frequency at different temperatures correlated well by using the time–temperature Williams–Landel–Ferry (WLF) superposition. Additionally, it was found that the frequency decreased slightly for a longer die but it increased when the shear rate went up. Three frequency functions were associated with three melt fracture patterns, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 903–911, 2005

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here