Premium
Temperature and pH‐response swelling behavior of poly(2‐ethyl‐2‐oxazoline)/chitosan interpenetrating polymer network hydrogels
Author(s) -
Kim Seon Jeong,
Lee Ki Jung,
Kim In Young,
Shin Dong Ik,
Kim Sun I.
Publication year - 2005
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.22091
Subject(s) - swelling , self healing hydrogels , chitosan , polymer chemistry , polymer , materials science , aqueous solution , interpenetrating polymer network , lower critical solution temperature , swelling capacity , polymerization , radical polymerization , chemical engineering , nuclear chemistry , chemistry , composite material , copolymer , organic chemistry , engineering
Interpenetrating polymer network (IPN) hydrogels composed of poly(2‐ethyl‐2‐oxazoline) (PEtOz) and chitosan (CS) were prepared with radical polymerization and were characterized for their swelling properties. Sample OC11 (hydrogel weight ratio PEtOz/CS = 1/1) swelled more than samples OC21 (PEtOz/CS = 2/1) and OC31 (PEtOz/CS =3/1), exhibiting a swelling ratio of about 2000 wt % in deionized water; the swelling ratios of the other samples were about 1000 and 700 wt %. The swelling behavior of the IPN hydrogels was observed under various pH and temperature conditions. The swelling ratios of the samples ranged from about 2000 to 6500 wt % at lower pHs, with a maximum swelling ratio of about 6500 wt % in a pH 2 aqueous solution. They exhibited low critical solution temperature behavior, with sample OC31 more sensitive to temperature and sample OC11 more sensitive to pH. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1100–1103, 2006