z-logo
Premium
Thermal oxidation kinetics for a poly(bismaleimide)
Author(s) -
Colin X.,
Marais C.,
Verdu J.
Publication year - 2001
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.2203
Subject(s) - isothermal process , thermal diffusivity , thermodynamics , kinetics , polymer , diffusion , analytical chemistry (journal) , kinetic energy , chemistry , materials science , polymer chemistry , organic chemistry , physics , quantum mechanics
The thermal oxidation of poly(bismaleimide) of the F655‐2 type, supplied by Hexcel‐Genin, was studied by isothermal gravimetry at 180, 210, and 240°C and various oxygen pressures ranging from 0 to 1.2 bar. Comparison of various sample thicknesses and visible microscopy observations on bulk aged samples shows that the whole oxidized layer has a depth of about 75 μm at 240°C, 138 μm at 210°C, and 229 μm at 180°C. An attempt was made to build a kinetic model to predict this depth. It is based on a differential equation in which O 2 diffusion and its consumption rate, r(C), are coupled, C being the O 2 concentration. Its resolution needs two sets of experiments: the first one to determine the O 2 diffusivity and solubility in the polymer, and the second one to determine r(C). The mathematical form of r(C) is derived from a mechanistic scheme of radical chain oxidation in which initiation is mainly due to POOH decomposition. This expression contains two kinetic parameters, α and β, the values of which are determined from the experimental curves of mass loss rate against O 2 pressure (in the stationary state). The theoretical predictions, at each temperature under consideration, are in excellent agreement with experimental results. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3418–3430, 2001

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom